骨骼肌简介_骨骼肌个人资料_骨骼肌微博_百科网
A-A+

骨骼肌简介_骨骼肌个人资料_骨骼肌微博

2016-11-30 14:42:33 科学百科 阅读 2 次

概述/骨骼肌 编辑

骨骼肌
骨骼肌骨骼肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(Ⅰ带)及暗带(A带)。明带染色较浅,而暗带染色较深。暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个z线之间的区段,叫做一个肌节,长约1.5-2.5微米。
相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。骨骼肌细胞构成骨胳肌组织,每块骨骼肌主要由骨骼肌组织构成,外包结缔组织膜、内有神经血管分布。骨骼肌收缩受意识支配,故又称“随意肌”。收缩的特点是快而有力,但不持久。
运动系统的肌肉muscle属于横纹肌,由于绝大部分附着于骨,故又名骨骼肌。每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布,在躯体神经支配下收缩或舒张,进行随意运动。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度。肌肉的弹性可以减缓外力对人体的冲击。肌肉内还有感受本身体位和状态的感受器,不断将冲动传向中枢,反射性地保持肌肉的紧张度,以维持体姿和保障运动时的协调。

分类/骨骼肌 编辑

骨骼肌
骨骼肌1.根据肌的位置
分为头肌、躯干肌、四肢肌等。
2.根据肌的功能
分为屈肌、伸肌、内收肌、外展肌、旋内肌、旋外肌等。
3.根据肌的外形
分为长肌、短肌、扁肌和轮匝肌等。

构造形态/骨骼肌 编辑

骨骼肌
骨骼肌一块典型的肌肉,可分为中间部的肌腹和两端的肌腱。肌腹是肌的主体部分,由横纹肌纤维组成的肌束聚集构成,色红,柔软有收缩能力。肌腱呈索条或扁带状,由平行的胶原纤维束构成,色白,有光泽,但无收缩能力,腱附着于骨处与骨膜牢固地编织在一起。阔肌的肌腹和肌腱都呈膜状,其肌腱叫做腱膜。肌腹的表面包以结缔组织性外膜,向两端则与肌腱组织融合在一起。
肌的形态各异,有长肌、短肌、阔肌、轮匝肌等基本类型。长肌多见于四肢,主要为梭形或扁带状,肌束的排列与肌的长轴相一致,收缩的幅度大,可产生大幅度的运动,但由于其横截面肌束的数目相对较少,故收缩力也较小;另有一些 肌有长的腱,肌束斜行排列于腱的两侧,酷似羽毛名为羽状肌(如股直肌),或斜行排列于腱的一侧,叫半羽状肌(如半膜肌、拇长屈肌),这些肌肉其生理横断面肌束的数量大大超过梭形或带形肌,故收缩力较大,但由于肌束短,所以运动的幅度小。短肌多见于手、足和椎间。阔肌多位于躯干,组成体腔的壁。轮匝肌则围绕于眼、口等开口部位。

命名原则/骨骼肌 编辑

肌肉可根据共形状、大小、位置、起止点、纤维方向和作用等命名。依形态命名的如斜方肌、菱形肌、三角肌、梨状肌等;依位置命名的如肩胛下肌、冈上肌、冈下肌、肱肌等;依位置和大小综合命名的有胸大肌、胸小肌、臀大肌等;依起止点命名的如胸锁乳突肌、肩胛舌骨肌等;依纤维方向和部位综合命名的有腹外斜肌、肋间外肌等;依作用命名的如旋后肌、咬肌等;依作用结合其它因素综合命名的如旋前圆肌、内收长肌、指浅屈肌等。

结构关系/骨骼肌 编辑

骨骼肌
骨骼肌人体肌肉中,除部分止于皮肤的皮肌和止于关节囊的关节肌外,绝大部分肌肉均起于一骨,止于另一骨,中间跨过一个或几个关节。它们的排列规律是,以所跨越关节的运动轴为准,形成与该轴线相交叉的两群互相对抗的肌肉。如纵行跨越水平冠状轴前方的屈肌群和后方的伸肌群;分别从内侧和外侧与水平矢状轴交叉的内收肌群和具有外展功能的肌群;横行或斜行跨越垂直轴,从前方跨越的旋内(旋前)肌群和从后方跨越的旋外(旋后)肌群。

一般讲几轴性关节就具有与几个运动轴相对应的对抗肌群,但也有个别关节,有的运动轴没有相应肌肉配布,如手的掌指关节,从关节面的形态看属于球窝关节,却只生有屈伸和收展两组对抗的肌肉,而没有与垂直轴交叉的回旋肌,所以该关节不能做主动的回旋运动,当然它有一定的被动的回旋能力。

围绕某一个运动轴作用相反的两组肌肉叫做对抗肌,但在进行某一运动时,一组肌肉收缩的同时,与其对抗的肌群则适度放松并维持一定的紧张度,二者对立统一,相反相成。另外,在完成一个运动时,除了主要的运动肌(原动肌)收缩外,尚需其它肌肉配合共同完成,这些配合原动肌的肌肉叫协力肌。当然,肌肉彼此间的关系,往往由于运动轴的不同,它们之间的关系也是互相转化的,在沿此一轴线运动时的两个对抗肌,到沿彼一轴线运动时则转化为协力肌。

此外,还有一些运动,在原动肌收缩时,必须另一些肌肉固定附近的关节,如握紧拳的动作,需要伸腕肌将腕关节固定在伸的位置上,屈指肌才能使手指充分屈曲将拳握紧,这种不直接参与该动作而为该动作提供先决条件的肌肉叫做共济肌。

光镜结构/骨骼肌 编辑

骨骼肌纤维

骨骼肌
骨骼肌纤维为长柱形的多核细胞,长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(Cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。

肌原纤维

肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称I带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称A带。在电镜下,暗带中央有一条浅色窄带称H带,H带中央还有一条深M线。明带中央则有一条深色的细线称Z线。两条相邻Z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2I带+A带+1/2I带所组成。肌节长约2~2.5μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。

超微结构/骨骼肌 编辑

肌原纤维

肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果。粗肌丝(thick filament)长约1.5μm,直径约15nm,位于肌节的A带。粗肌丝中央借M线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在Z线上,另一端插入粗肌丝之间,止于H带外侧。因此,I带内只有细肌丝,A带中央的H带内只有粗肌丝,而H带两侧的A带内既有粗肌丝又有细肌丝;所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。

分子结构

粗肌丝

骨骼肌
骨骼肌细胞粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。

M线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)。M线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种ATP酶,能与ATP结合。只有当肌球蛋白分子头部与肌动蛋白接触时,ATP酶才被激活,于是分解ATP放出能量,使横桥发生屈伸运动。

细肌丝

细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球骨骼肌形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为TnT、 TnI和 TnC 。肌原蛋白借TnT而附于原肌球蛋白分子上, TnI是抑制肌动蛋白和肌球蛋白相互作用的亚单位, TnC 则是能与Ca2+相结合的亚单位。

横小管

它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称T小管)。人与哺乳动物的横小管位于A带与I带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围。横小管可将肌膜的兴奋迅速传到每个肌节。

肌浆网

肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种ATP酶),有调节肌浆中Ca2+浓度的作用。

辅助结构/骨骼肌 编辑

筋膜

骨骼肌
骨骼肌筋膜可分为浅、深两层。浅筋膜为分布于全身皮下层深部的纤维层,有人将皮下组织全层均列属于浅筋膜,它由疏松结缔组织构成。内含浅动、静脉、浅淋巴结和淋巴管、皮神经等,有些部位如面部、颈部生有皮肌,胸部的乳腺也在此层内。
深筋膜又叫固有筋膜,由致密结缔组织构成,遍布全身,包裹肌肉、血管神经束和内脏器官。深筋膜除包被于肌肉的表面外,当肌肉分层时,固有筋膜也分层。在四肢,由于运动较剧烈,固有筋膜特别发达、厚而坚韧,并向内伸入直抵骨膜,形成筋膜鞘将作用不同的肌群分隔开,叫做肌间隔。在体腔肌肉的内面,也衬以固有筋膜,如胸内、腹内和盆内筋膜等,甚而包在一些器官的周围,构成脏器筋膜。
一些大的血管和神经干在肌肉间穿行时,深筋膜也包绕它们,形成血管鞘。筋膜的发育与肌肉的发达程度相伴行,肌肉越发达,筋膜的发育也愈好。在手腕及足踝部,固有筋膜增厚形成韧带并伸入深部分隔成若干隧道,以约束深面通过的肌腱。在筋膜分层的部位,筋膜之间的间隙充以疏松结缔组织,叫做筋膜间隙,

腱鞘

一些运动剧烈的部位如手和足部,长肌腱通过骨面时,其表面的深筋膜增厚,并伸向深部与骨膜连接,形成筒状的纤维鞘,其内含由滑膜构成的双层圆筒状套管,套管的内层紧包在肌腱的表面,外层则与纤维鞘相贴。两层之间含有少量滑液。因此肌腱既被固定在一定位置上,又可滑动并减少与骨面的摩擦。在发生中滑膜鞘的两层在骨面与肌腱间互相移行,叫做腱系膜,发育过程中腱系膜大部分消失,仅在一定部位上保留,以引导营养肌腱的血管通过。

滑液囊

在一些肌肉抵止腱和骨面之间,生有结缔组织小囊,壁薄,内含滑液,叫做滑液囊。其功能是减缓肌腱与骨面的摩擦。滑液囊有的是独立封闭的,有的与邻近的关节腔相通,可视为关节囊滑膜层的突出物。 

收缩原理/骨骼肌 编辑

骨骼肌
骨骼肌骨骼肌收缩的机制是肌丝滑动原理。其过程大致如下:
①运动神经末梢将神经冲动传递给肌膜;
②肌膜的兴奋经横小管迅速传向终池;
③肌浆网膜上的钙泵活动,将大量Ca2+转运到肌浆内;
④肌原蛋白TnC与Ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;
⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;
⑥肌球蛋白头ATP酶被激活,分解了ATP并释放能量;
⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向M线;
⑧细肌丝向A带内滑入,I带变窄,A带长度不变,但H带因细肌丝的插入可消失,由于细肌丝在粗肌丝之间向M线滑动,肌节缩短,肌纤维收缩;
⑨收缩完毕,肌浆内Ca2+被泵入肌浆网内,肌浆内Ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。

运动机理/骨骼肌 编辑

骨骼肌
骨骼肌神经-骨骼肌接头处的兴奋传递
运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡。用组织化学的方法可以证明,囊泡内含有ACh;此ACh首先在轴浆中合成,然后贮存在囊泡内。

据测定,每个囊泡中贮存的ACh量通常是相当恒定的,且当它们被释放时,也是通过出胞作用,以囊泡为单位“倾囊”释放,被称为量子式释放。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。

据推算,一次动作电位的到达,能使大约200~300个囊泡的内容排放,使近107个ACh分子被释放。轴突末梢处的电位变化引起囊泡排放的过程十分复杂,但首先是轴突末梢膜的去极化,引起了该处特有的电压门控式Ca2+通道开放,引起细胞间隙液中的Ca2+进入轴突末梢,触发了囊泡移动以至排放的过程。Ca2+的进入量似乎决定着囊泡释放的数目;细胞外液中低Ca2+或(和)高Mg2+,都可阻碍ACh的释放而影响神经-肌接头的正常功能。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。

特性/骨骼肌 编辑

骨骼肌
骨骼肌物理特性
1、伸展性:骨骼肌在受到外力牵拉或负重时可被拉长的特性。
2、弹性:当外力或负重取消后,肌肉的长度又可恢复的特性。
3、粘滞性:由于肌浆内各分子之间的相互摩擦作用所产生的特性。


生理特性
1、兴奋性:骨骼肌是可兴奋组织,受到刺激后可产生兴奋(即产生动作电位)的特性。
2、收缩性:肌肉受到刺激产生兴奋后,立即产生收缩反应的特性引起骨骼肌兴奋刺激条件。
3、刺激强度:要使肌肉产生兴奋,刺激必须达到一定强度阈上刺激阈下刺激。
4、阈刺激:引起肌肉兴奋的最小刺激强度刺激的作用时间刺激强度变化率要使可兴奋组织兴奋,刺激必须有足够的变化率。

运动神经/骨骼肌 编辑

运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。
在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。

机能研究/骨骼肌 编辑

对血糖机能

骨髓肌是具有收缩能力的肌细胞(由于其形状成幼长的纤维状,所以亦称作肌纤维)所组成。任何的身体活动和体育活动,都是骨骼肌收缩的完成,直接影响人体的力量和耐力。
诺贝尔生理学奖获得者、意大利科学家Daniel Bovet经大量研究证实:骨骼肌在血糖利用方面作用极其重要,人体85%的血糖转化和71%的糖元储存由骨骼肌完成。骨髓肌——是具有收缩能力的组织之一,人体所有的活动几乎都是由骨骼肌收缩来完成,其强弱直接影响人体的力量和耐力。人体85%以上的糖分是供给骨骼肌转化成能量和体力的,是人体力量的主要能源。
专家研究发现,99.8%的糖尿病人骨骼肌出现弱化甚至萎缩现象,骨骼肌的弱化,一方面不能将糖分转化为能量和体力,从而造成糖尿病人长期感觉疲惫、虚弱、乏力;另一方面由于糖分不能被骨骼肌完全利用,而在体内堆积,造成血糖升高。
同时,骨骼肌还是人体糖分主要的储存场所,承担了71%以上糖分的储存,对人体血糖平衡具有极其重要的缓冲作用。一方面可以在血糖增多时将多余糖分转运存储在骨骼肌中,避免糖分堆积在血液中使血糖升高;另一方面,当血糖过低时,骨骼肌释放存储的糖分,维持人体正常能量的需要,防止血糖过低。所以只有修补骨骼肌,才能打通人体用糖渠道,使血糖通过利用达到平衡,防止血糖淤积,平衡血糖代谢,防止并发症。
2006年,英国皇家糖尿病协会J.R.Kantor教授的糖尿病研究证实:自然界中有一种神奇物质——L阿拉伯糖,具有修补骨骼肌的显著作用。2007年国际糖尿病联盟(IDF)研究证实:L阿拉伯糖可以修补骨骼肌,有助于骨骼肌的恢复,加强骨骼肌对血糖的利用和存储。国内由山东糖科院糖尿病研究中心的专家带头,经过科研和实验证明了以上结论,即99.8%的糖尿病人骨骼肌出现弱化甚至萎缩现象,而且骨骼肌确实承担了71%以上糖分的储存,对人体血糖平衡具有极其重要的缓冲作用。

横纹肌溶解症

横纹肌溶解症(rhabdomyolysis,RM)是指可逆或不可逆的横纹肌细胞受损,使细胞膜的完整性改变,细胞内物质如蛋白、离子等物质进入到血液里,最后从尿中排出。其主要临床特征是:血清磷酸肌酸激酶(CPK)升高,血和尿中的肌红蛋白阳性,伴肌痛、肌紧张和肌肉注水感。横纹肌溶解症导致急性肾功能衰竭 (ARF)的发生率为20%~33%,而且RM在急性肾衰的发病原因中大约占10%~15%,也就是说大约有10~15%的急性肾衰竭是由横纹肌溶解综合征引起的。过量体育锻炼和军事训练,尤其在闷热潮湿的环境下运动容易导致横纹肌溶解症,也称作亦称运动性横纹肌溶解症。2015年4月29日,长沙一女白领在参加公司的拓展训练的时候,一口气做了700个深蹲,当时腰腿酸痛不已,三天之后大腿疼得无法走路,小便也呈“浓茶色”,送医院抢救,检查显示,她得了“横纹肌溶解综合征”:肌酸激酶、乳酸脱氢酶、肌红蛋白等心肌酶指标均超标,其中肌酸激酶更是超出正常值1000多倍,已经导致她肾脏衰竭。